Comparative Study of Ferroelectric and Piezoelectric Properties of BNT-BKT-BT Ceramics near the Phase Transition Zone

نویسندگان

  • David Andres Fernandez-Benavides
  • Aixa Ibeth Gutierrez-Perez
  • Angelica Maria Benitez-Castro
  • Maria Teresa Ayala-Ayala
  • Barbara Moreno-Murguia
  • Juan Muñoz-Saldaña
چکیده

We report a comprehensive comparative study of ferroelectric and piezoelectric properties of BNT-BKT-BT ceramics through the MPB (morphotropic phase boundary) zone, from the rhombohedral to the tetragonal phases in the system (97.5-x)(Bi0.5Na0.5)TiO₃ + x(Bi0.5K0.5)TiO₃ + 2.5(BaTiO₃), where x = 0 to 24.5 mol %. The structural transitions were studied by XRD patterns and Raman spectra. The MPB was confirmed between x = 10 and 12.5 mol % BKT. The dielectric/ferroelectric/piezoelectric properties of the BNT-BKT-BT system are maximized in the MPB region exhibiting a dielectric constant of 1506, a remanent polarization of 34.4 μC/cm², a coercive field = 36.9 kV/cm, and piezoelectric values of d33 = 109 pC/N, kt = 0.52, and kp = 0.24. Changes in microstructure as a function of BKT content are also presented and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development, Characterization, and Piezoelectric Fatigue Behavior of Lead- Free Perovskite Piezoelectric Ceramics

The development of lead-free perovskite piezoelectrics as environmentally compatible alternatives to lead zirconate titanate (PZT) has received significant attention recently. Two main categories of lead free perovskite piezoelectric ceramic systems were investigated as potential replacements to lead zirconate titantate (PZT) for actuator devices. First, solid solutions based on Li, Ta, and Sb ...

متن کامل

Effect of Calcination Kinetics and Microwave Sintering Parameters on Dielectric and Peizo-Electric Properties of(K0.5Na0.5) NBO3 Ceramics

An efficient solid-state approach was established to synthesize (K0.5Na0.5) NbO3 ceramics using calcination kinetics and microwave assisted sintering. Milling of carbonate and oxide raw materials were carried out for 15h to obtain homogeneous nano particles. The crystallite size of 5.30 nm was obtained for the KNN system after calcination through optimized parameters and observed to be stoichio...

متن کامل

Revealing the core-shell interactions of a giant strain relaxor ferroelectric 0.75Bi1/2Na1/2TiO3-0.25SrTiO3

Lead-free relaxor ferroelectrics that feature a core-shell microstructure provide an excellent electromechanical response. They even have the potential to replace the environmentally hazardous lead-zirconia-titanate (PZT) in large strain actuation applications. Although the dielectric properties of core-shell ceramics have been extensively investigated, their piezoelectric properties are not ye...

متن کامل

Studying the Effects of Nano Sintering Additives on Microstructure and Electrical Properties of Potassium-Sodium Niobate Piezoceramics

In this paper, lead free (K0.48,Na0.52)NbO3 (KNN(48-52)) piezoelectric ceramics were made by conventional solid state sintering process. Additives of nano ZnO (n-ZnO), nano CuO (n-CuO) and nano SnO2 (n-SnO2) were used in order to decrease the sintering temperature, as well as modifying the dielectric, piezoelectric and ferroelectric propert...

متن کامل

Dielectric and piezoelectric properties of sodium lithium niobate Na1−xLixNbO3 lead free ferroelectric ceramics

High density sodium lithium niobate lead free ceramics near the morphtropic phase boundary [NaxLi1−xNbO3, (LNN), x=0.12] were prepared by the solid state reaction method. XRD patterns showed that the lattice structures were changed after polarization. The temperature dependence of the dielectric constant and dielectric loss, pyroelectric coefficient and DSC curves of LNN ceramics showed that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018